$$u^2=\tan t$$ dönüşümü yapalım.
$$u^2=\tan t\Rightarrow \sec^2 t=1+u^4$$ ve
$$u^2=\tan t\Rightarrow 2udu=\sec^2tdt\Rightarrow 2udu=(1+u^4)dt\Rightarrow dt=\frac{2u}{1+u^4}du$$ olur. O halde
$$\int u\frac{2u}{1+u^4}du=\int \frac{2u^2}{1+u^4}du=\int \frac{2u^2}{(1+\sqrt{2}u+u^2)(1-\sqrt{2}u+u^2)}du$$
$$=$$
$$\int \left(\frac{Au+B}{1+\sqrt{2}u+u^2} + \frac{Cu+D}{1-\sqrt{2}u+u^2}\right)du$$
$$=$$
$$\ldots$$