$\mathbb{R}$'de (hatta metrik uzaylarda) yakınsak her dizinin bir Cauchy dizisi olduğunu göstermek kolay. Bu yüzden $\mathbb{R}$'deki herhangi bir Cauchy dizisinin yakınsak olduğunu gösterirsek ispat biter. Burada gerçel sayılar kümesi üzerinde alışılmış metriğin olduğunu varsayıyoruz. Farklı metrikler söz konusu olduğunda iddia doğru olmayabilir.
$\langle x_n\rangle, \mbox{ } \mathbb{R}$'de bir Cauchy dizisi ve $\epsilon>0$ olsun.
$\left.\begin{array}{rr} \epsilon>0\\ \\ \langle x_n\rangle\in \mathbb{R}^{\mathbb{N}}\text{ Cauchy dizisi} \end{array}\right\}\Rightarrow (\exists N\in\mathbb{N})(\forall n,m\geq N)\left(|x_n-x_m|<\epsilon\right)$
$\Rightarrow(\exists N\in\mathbb{N})(\forall n\geq N)\left(|x_n-x_{N}|<\dfrac{\epsilon}{2}\right)$
$\Rightarrow(\exists N\in\mathbb{N})(\forall n\geq N)\left( x_{N}-\dfrac{\epsilon}{2}<x_n<x_{N}+\dfrac{\epsilon}{2}\right)$
$\Rightarrow(\exists N\in\mathbb{N})(\forall n\geq N)\left( x_n\in A:=\left(x_{N}-\dfrac{\epsilon}{2},x_{N}+\dfrac{\epsilon}{2}\right)\right)$
$\Rightarrow(\exists N\in\mathbb{N})(\forall n\geq N)\left( x_n\in B_N:=\left\{x_{N},x_{N+1},x_{N+2},\ldots\right\} \subseteq A\right)$
$\Rightarrow(\exists N\in\mathbb{N})(\forall n\geq N) (|B_N|=\aleph_0)\left(x_{N}-\dfrac{\epsilon}{2}\in B_N^a\neq\emptyset\right)\left(x_{N}+\dfrac{\epsilon}{2}\in B_{N}^{ü}\neq\emptyset\right)$
$\Rightarrow(\exists N\in\mathbb{N})(\forall n\geq N) (\exists x\in\mathbb{R})(x=\sup B_N)\left(x_{N}-\dfrac{\epsilon}{2}\leq x\leq x_{N}+\dfrac{\epsilon}{2}\right)$
$\Rightarrow(\exists N\in\mathbb{N})(\forall n\geq N)\left(|x-x_{N}|\leq\dfrac{\epsilon}{2}\right)$
$\Rightarrow(\exists N\in\mathbb{N})(\forall n\geq N)\left(|x_n-x|\leq|x_n-x_{N}|+|x_{N}-x|<\dfrac{\epsilon}{2}+\dfrac{\epsilon}{2}=\epsilon\right)$ elde edilir. O halde $$x_n\rightarrow x.$$