Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
547 kez görüntülendi

$(X,\tau_1),(Y,\tau_2)$ topolojik uzaylar olmak üzere

$$(A\subseteq X)(B\subseteq Y)\Rightarrow (A\times B)^{\circ}=A^{\circ}\times B^{\circ}$$ olduğunu gösteriniz.

Lisans Matematik kategorisinde (11.5k puan) tarafından  | 547 kez görüntülendi

Bu linkteki bilgiden faydalanabilirsiniz.

1 cevap

0 beğenilme 0 beğenilmeme

$\left.\begin{array}{ccc} (A\subseteq X)(B\subseteq Y)\Rightarrow (A^{\circ}\subseteq A)(B^{\circ}\subseteq B)\Rightarrow A^{\circ}\times B^{\circ}\subseteq A\times B\Rightarrow (A^{\circ}\times B^{\circ})^{\circ}\subseteq (A\times B)^{\circ}\\ \\ (A\subseteq X)(B\subseteq Y)\Rightarrow (A^{\circ}\in\tau_1)(B^{\circ}\in\tau_2)\Rightarrow A^{\circ}\times B^{\circ}\in\tau_1\star\tau_2\Rightarrow (A^{\circ}\times B^{\circ})^{\circ} =A^{\circ}\times B^{\circ} \end{array}\right\}\Rightarrow A^{\circ}\times B^{\circ}\subseteq (A\times B)^{\circ}\ldots (1)$


$\left.\begin{array}{rr} (A\subseteq X)(B\subseteq Y)\Rightarrow A\times B\subseteq X\times Y\Rightarrow (A\times B)^{\circ}\in\tau_1\star\tau_2\\ \\ \pi_1:X\times Y\to X, \pi_1(x,y)=x \,\ (\tau_1\star\tau_2\mbox{ - }\tau_1) \text{ açık}\end{array}\right\}\overset{?}{\Rightarrow} \pi_1[(A\times B)^{\circ}]\in\tau_1\Rightarrow\left(\pi_1[(A\times B)^{\circ}]\right)^{\circ}=\pi_1[(A\times B)^{\circ}]\ldots (2)$

$(A\subseteq X)(B\subseteq Y)\Rightarrow A\times B\subseteq X\times Y\Rightarrow (A\times B)^{\circ}\subseteq A\times B\Rightarrow \pi_1[(A\times B)^{\circ}]\subseteq \pi_1[A\times B]=A\Rightarrow (\pi_1[(A\times B)^{\circ}])^{\circ}\subseteq A^{\circ}\ldots (3)$

$(2),(3)\Rightarrow \pi_1[(A\times B)^{\circ}]\subseteq  A^{\circ}\ldots (4)$


$\left.\begin{array}{rr} (A\subseteq X)(B\subseteq Y)\Rightarrow A\times B\subseteq X\times Y\Rightarrow (A\times B)^{\circ}\in\tau_1\star\tau_2\\ \\ \pi_2:X\times Y\to Y, \pi_2(x,y)=y \,\ (\tau_1\star\tau_2\mbox{ - }\tau_2) \text{ açık}\end{array}\right\}\overset{?}{\Rightarrow} \pi_2[(A\times B)^{\circ}]\in\tau_2\Rightarrow\left(\pi_2[(A\times B)^{\circ}]\right)^{\circ}=\pi_2[(A\times B)^{\circ}]\ldots (5)$

$(A\subseteq X)(B\subseteq Y)\Rightarrow A\times B\subseteq X\times Y\Rightarrow (A\times B)^{\circ}\subseteq A\times B\Rightarrow \pi_2[(A\times B)^{\circ}]\subseteq \pi_2[A\times B]=B\Rightarrow (\pi_2[(A\times B)^{\circ}])^{\circ}\subseteq B^{\circ}\ldots (6)$

$(5),(6)\Rightarrow \pi_2[(A\times B)^{\circ}]\subseteq  B^{\circ}\ldots (7)$

$(4),(7)\Rightarrow (A\times B)^{\circ}\overset{?}{\subseteq} \pi_1[(A\times B)^{\circ}]\times\pi_2[(A\times B)^{\circ}]\subseteq A^{\circ}\times B^{\circ}\ldots (8)$


$$(1),(8)\Rightarrow (A\times B)^{\circ}=A^{\circ}\times B^{\circ}.$$

Not : Son "?" işaretinin gerekçesi yorumdaki linkte mevcut. Diğer "?" işaretlerinin olduğu yerlerde de yine kafa yorulmasının faydalı olacağını düşünüyorum.

(11.5k puan) tarafından 
tarafından düzenlendi
20,274 soru
21,803 cevap
73,475 yorum
2,427,856 kullanıcı