$A\in \tau$ ve $x\in A\cap\overline{B}$ olsun.
$$\left.\begin{array}{rr} x\in A\cap\overline{B}\Rightarrow(x\in A)\left(x\in \overline{B}\right)\Rightarrow(x\in A)(\forall U\in\mathcal{U}(x))(U\cap B\neq \emptyset)\\ A\in\tau \end{array}\right\}\Rightarrow$$
$$\Rightarrow$$
$$(\forall U\in\mathcal{U}(x))(U\cap A\in\mathcal{U}(x))((U\cap A)\cap B\neq \emptyset)$$
$$\Rightarrow$$
$$(\forall U\in\mathcal{U}(x))(U\cap (A\cap B)\neq \emptyset)$$
$$\Rightarrow$$
$$x\in \overline{A\cap B}.$$