$(X,\tau)$ topolojik uzay ve $A,B\subseteq X$ olsun.
$$\left.\begin{array}{rr} A\subseteq A\cup B\Rightarrow D(A)\subseteq D(A\cup B) \\ \\ B\subseteq A\cup B\Rightarrow D(B)\subseteq D(A\cup B)\end{array}\right\}\Rightarrow D(A)\cup D(B)\subseteq D(A\cup B)\ldots (1)$$
$$x\notin D(A)\cup D(B)$$
$$\Rightarrow$$
$$x\notin D(A)\wedge x\notin D(B)$$
$$\Rightarrow$$
$$(\exists U\in\mathcal{U}(x))((U\setminus\{x\})\cap A=\emptyset)\wedge (\exists V\in\mathcal{U}(x))((V\setminus\{x\})\cap B=\emptyset)$$
$$\Rightarrow$$
$$(U\cap V\in\mathcal{U}(x))([(U\setminus\{x\})\cap A]\cup [(V\setminus\{x\})\cap B]=\emptyset)$$
$$\Rightarrow$$
$$(U\cap V\in\mathcal{U}(x))([((U\cap V)\setminus\{x\})\cap A]\cup [((U\cap V)\setminus\{x\})\cap B]\subseteq [(U\setminus\{x\})\cap A]\cup [(V\setminus\{x\})\cap B]=\emptyset)$$
$$\Rightarrow$$
$$ (U\cap V\in\mathcal{U}(x))([((U\cap V)\setminus\{x\})\cap A]\cup [((U\cap V)\setminus\{x\})\cap B]=\emptyset)$$
$$\Rightarrow$$
$$ (U\cap V\in\mathcal{U}(x))([((U\cap V)\setminus\{x\})\cap (A\cup B)]=\emptyset)$$
$$\Rightarrow$$
$$x\notin D(A\cup B)$$
Buradan $$D(A\cup B)\subseteq D(A)\cup D(B)\ldots (2)$$ elde edilir. O halde
$$(1),(2)\Rightarrow D(A\cup B)=D(A)\cup D(B)$$ bulunur.