$\mathcal{A}_2\subseteq \tau_2$ ve $f[A]\subseteq \cup\mathcal{A}_2$ olsun yani $\mathcal{A}_2$ ailesi, $f[A]$ kümesinin bir $\tau_2$-açık örtüsü olsun.
$\left.\begin{array}{r} (\mathcal{A}_2\subseteq \tau_2)(f[A]\subseteq \cup\mathcal{A}_2) \\ \\ f, \ (\tau_1\mbox{-}\tau_2) \text{ sürekli} \end{array} \right\}\Rightarrow \begin{array}{c} \\ \\ \left. \begin{array}{r} \left(\mathcal{A}_1:=\left\{f^{-1}[B]\big{|}B\in\mathcal{A}_2\right\}\subseteq\tau_1\right)(A\subseteq f^{-1}[f[A]]\subseteq \cup \mathcal{A}_1) \\ \\ A, \ \tau_1\text{-kompakt} \end{array} \right\} \Rightarrow \end{array}$
$\left.\begin{array}{rr} \Rightarrow (\exists \mathcal{A}_1^*\subseteq \mathcal{A}_1)(|\mathcal{A}_1^*|<\aleph_0) (A\subseteq \cup\mathcal{A}_1^*)\\ \\ \mathcal{A}_2^*:=\left\{B\big{|}f[B]\in \mathcal{A}_1^*\right\} \end{array}\right\}\Rightarrow \left(\mathcal{A}_2^* \subseteq \mathcal{A}_2\right)(|\mathcal{A}_2^*|<\aleph_0)(f[A]\subseteq \cup\mathcal{A}_2^*).$