$$(p\wedge q)\Rightarrow r\equiv (p\wedge r')\Rightarrow q'$$ olduğundan
$$\underset{p}{\underbrace{((X,\tau), \text{ kompakt uzay})}}\underset{q}{\underbrace{(|A|\geq \aleph_0)}}\Rightarrow \underset{r}{\underbrace{D(A)\neq\emptyset}}$$
önermesi ile
$$\underset{p}{\underbrace {((X,\tau), \text{ kompakt uzay})}}\underset{r'}{\underbrace {(D(A)=\emptyset)}} \Rightarrow \underset{q'}{\underbrace {|A|<\aleph_0}}$$
önermesi denk önermelerdir.
$(X,\tau)$ kompakt uzay ve $D(A)=\emptyset$ olsun.
$D(A)=\emptyset\Rightarrow (\forall x\in X)(x\notin D(A))\Rightarrow (\forall x\in X)(\exists U_x\in\mathcal{U}(x))((U_x\setminus\{x\})\cap A=\emptyset)$
$\left.\begin{array}{r} \Rightarrow (\forall x\in X)(\exists U_x\in\mathcal{U}(x))(U_x\cap A\subseteq \{x\}) \\ \\ \mathcal{A}:=\{U_x|(\forall x\in X)(\exists U_x\in \mathcal{U}(x))(U_x\cap A\subseteq \{x\})\} \end{array} \right\}\Rightarrow \begin{array}{c} \\ \\ \left. \begin{array}{rr} \!\!\!(\mathcal{A}\subseteq \tau)(A\subseteq X=\cup\mathcal{A}) \\ \\ (X,\tau), \text{ kompakt uzay} \end{array} \right\} \Rightarrow \end{array}$
$\left.\begin{array}{rr} \Rightarrow (\exists \mathcal{A}^*\subseteq\mathcal{A})(|\mathcal{A}^*|<\aleph_0)(A\subseteq X=\cup\mathcal{A}^*) \\ \\ (U\in\mathcal{U}(x))(U_x\cap A\subseteq \{x\}) \Rightarrow |U_x|=1\end{array}\right\}\Rightarrow |A|<\aleph_0.$