I. Durum: $x\neq x'\wedge y=y'$ olsun.
$\left.\begin{array}{rr} x\neq x'\Rightarrow 2^{x-1}\neq 2^{x'-1} \\ \\ y=y'\Rightarrow 2y-1=2y'-1 \end{array} \right\}\Rightarrow 2^{x-1} (2y-1)\neq 2^{x'-1}(2y'-1)\Rightarrow f(x,y)\neq f(x',y')$
$-----------------------------------$
II. Durum: $x=x'\wedge y\neq y'$ olsun.
$\left.\begin{array}{rr} x= x'\Rightarrow 2^{x-1}=2^{x'-1} \\ \\ y\neq y'\Rightarrow 2y-1\neq 2y'-1 \end{array} \right\}\Rightarrow 2^{x-1} (2y-1)\neq 2^{x'-1}(2y'-1)\Rightarrow f(x,y)\neq f(x',y')$
$-----------------------------------$
III. Durum: $x\neq x'\wedge y\neq y'$ olsun.
$\left.\begin{array}{rr} x\neq x'\Rightarrow 2^{x-1}\neq 2^{x'-1} \\ \\ y\neq y'\Rightarrow 2y-1\neq 2y'-1 \end{array} \right\}\overset{?}{\Rightarrow} 2^{x-1} (2y-1)\neq 2^{x'-1}(2y'-1)\Rightarrow f(x,y)\neq f(x',y')$