Merhaba,
$x,y$ pozitif gerçel sayıları için $x+y=1$ eşitliği sağlanıyorsa bu koşuldaki $x,y$ gerçel sayıları için $$\dfrac{x^2+y^2}{xy}$$ ifadesinin alabileceği en küçük değeri bulunuz?
(Soruyu ben yazdım bu arada, (zaten bilindik bir tip ama) kaynaklarıma ulaşamadığım için (umarım bir hata yoktur))
Mesela burada çözerken $\text{Karesel}\geq\text{Aritmetik}$ kullanılarak $$\sqrt{\dfrac{x^2+y^2}{2}}\geq\dfrac{x+y}{2}\implies x^2+y^2\geq \dfrac{1}{2}$$ yani payın en küçük değeri, ve sonra $x^2+y^2\geq 2xy$ yani $$xy\leq\dfrac{1}{4}$$ burada ifadenin minimum değerini bulabilmek için şimdi pay için ve payda için bu değerleri mı seçmeliyim? (Seçiyorum ama) $$\dfrac{\dfrac{1}{2}}{\dfrac{1}{4}}=2$$ geliyor sonuç. Eşitliğin sağlanması için $x=y=1/2$ vermem yeterli. (Hatta direk $x=y$)
pay ve kesirsiz ifadelerde çoğunlukla uç değer verilerek elde edilen çözüm gördüm, ama paydada bunu pek sık görmedim ve kitabımda da benzeri bir hareket görünce emin olamadım çünkü bu şekilde yapmak her soruda işe yaramıyor, o yüzden soruyorum:
1)Bu neden böyle?
2)Burada genel bir çözüm mü elde ediliyor yoksa tek bir $xy$ değeri için mi?
3) Eşitlik de sağlanıyor ama daha küçük değer bulunabilir mi?
4) Kapalı fonksiyonun türevi kullanılarak daha hızlı cevaba ulaşılabilir mi?(Daha güvenli malûm)