$x=-4$ dogrusuna gore simetrik olan noktalarin goruntuleri aynidir. Ornegin $x=-1$ ve $x=-7$ noktalari bu dogruya gore simetrik olduklarindan (-1,-27), (-7,-27) olur.
Bu soruyu sitede daha önce de birisi sormuştu, parabolün tepe noktası $r=-4$ oluyor ve buna simetrik olan $-10$ ve $2$ noktaları var, eğer bize kafes içinde kalan noktaların sayısını sorsaydı $6$ tane $-4$'ten küçük $6$ tane de $-4$'ten büyük $13$ tane nokta olurdu. Ama burada koordinat''ları'' negatif olan dediğinden iki koordinatı da negatif alınmalı. ($x=0,+1,+2$ olduğu noktaları atmıştık). Şurada hatta bir çözüm de yapmıştım, ama soruyu başka bir soruya benzeterek. Normalde kafes noktalarını alır ve $x$ koordinatlarına göre hangisi $+$ hangisi $-$ diye düşünürsün. $36$ nokta çıkmamasının sebebi $y$'nin tamsayı değerlerini veren bütün $x$ değerlerinin tamsayı olmaması. $y$'ye göre değil $x$'e göre sayarsak daha rahat çözüme ulaşırız çünkü herhangi bir $x$ tamsayısı için $x^2-8x+20$ de bir tamsayıdır. Ama herhangi bir $x^2-8x+20$ tamsayısı için $x$ de bir tamsayıdır diyemeyiz.
teşekkür ederim, soru zaten daha önce sorulmuş şimdi fark ettim. http://matkafasi.com/110243/koordinatlari-negatif-tamsayilar-olan-kac-noktasi-vardir.
karekök yayınları
Benzer soru oldugunu farketmedim.