Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
1 beğenilme 0 beğenilmeme
652 kez görüntülendi

Yani genel terimi $$\frac{n^2}{n!}$$ olan dizinin limitinin $0$ olduğunu gösteriniz.

Lisans Matematik kategorisinde (11.5k puan) tarafından  | 652 kez görüntülendi

2 Cevaplar

1 beğenilme 0 beğenilmeme

$n\ge 3$ icin $$0\le \frac{1}{(n-2)!}\frac{n}{n-1}\frac{n}{n}\le \frac{2}{n-2}$$ oldugundan sıkıştırma teoremi sonucu istenen elde edilir. Hatta hic ek teorem de kullanmadan bu esitsizlik ile tanim da uygulanabilir.

(25.5k puan) tarafından 
1 beğenilme 0 beğenilmeme

$$\frac{n^2}{n!}\leq \frac{n^2}{n(n-1)(n-2)}\leq\frac{[(n-2)+2]^2}{(n-2)^3}=\frac{(n-2)^2+4(n-2)+4}{(n-2)^3}$$$$=\frac{1}{n-2}+ \frac{4}{(n-2)^2}+\frac{4}{(n-2)^3}\leq \frac{1}{n-2}+ \frac{4}{n-2}+\frac{4}{n-2}=\frac{9}{n-2}<\epsilon$$$$ \Leftrightarrow$$$$ \frac{9}{\epsilon}+2<n$$ olduğundan her $\epsilon>0$ sayısı için $K=\lfloor \frac{9}{\epsilon}+2\rfloor +1=\lfloor \frac{9}{\epsilon}\rfloor +3\in \mathbb{N}$ seçilirse $$n\geq K\Rightarrow \Big{|}\frac{n^2}{n!}-0\Big{|}<\epsilon\ldots (\star)$$ koşulu sağlanır. O halde genel terimi $\frac{n^2}{n!}$ olan dizinin limiti sıfırdır. 

Şimdi her $\epsilon>0$ sayısı için $K=\lfloor \frac{9}{\epsilon}+2\rfloor +1=\lfloor \frac{9}{\epsilon}\rfloor +3\in \mathbb{N}$ seçtiğimizde $(\star)$ koşulunun gerçekten de sağlandığını gösterelim. $(K\geq 3$ olduğuna dikkat ediniz.$)$

$\lfloor \frac{9}{\epsilon}\rfloor =m\Rightarrow m\leq \frac{9}{\epsilon}<m+1\Rightarrow\frac{9}{m+1}<\epsilon\ldots (1)$

$\left.\begin{array}{rr} K=\lfloor \frac{9}{\epsilon}\rfloor +3  \\ \\ \lfloor \frac{9}{\epsilon}\rfloor =m \end{array}\right\}\Rightarrow K=m+3\Rightarrow \frac{9}{K-2}=\frac{9}{m+1}\ldots (2)$

$\left.\begin{array}{rr} (1),(2)\Rightarrow \frac{9}{K-2}<\epsilon  \\ \\ n\geq K\Rightarrow n-2\leq K-2 \Rightarrow  \frac{9}{n-2}\leq \frac{9}{K-2} \end{array}\right\}\Rightarrow \frac{n^2}{n!}<\frac{9}{n-2}<\epsilon$ elde edilir.

(11.5k puan) tarafından 
tarafından düzenlendi
20,274 soru
21,803 cevap
73,475 yorum
2,427,817 kullanıcı