Bir örnek üzerinden açıklayayım;
$y=x^{3x}$
$d'y/dx'$i bulmak için:
Normalde 2 tarafında doğal logaritmasını alıyoruz ki üstteki bilinmeyeni aşağı çekebilelim.Ancak ben burada şunu denedim:
$e^{lny}=e^{lnx^{3x}}$
$y=e^{3xlnx}$
$y'=e^{3xlnx}.3lnx+x$
Çoğu adımı atladım, sormak istiyorsanız açıklayayım.