$f:\mathbb{R} \to \mathbb{R}$ iki kez türevlenebilen ve $f(0)=0$ ve $f'(0)=0$ değerlerini sağlayabilen bir fonksiyon olsun ve $x \in \left[0, \infty \right)$ için $f′′(x)−5f′(x)+6f(x) \geq 0$ sağlansın.
Tüm $x \in \left[0, \infty \right)$ için $f(x) \geq 3e^{2x}−2e^{3x}$ olduğunu ispatlayınız.