$ABC$ üçgeninin iç açı ölçüleri sırası ile $\alpha,2\alpha,180-3\alpha$ ve kenar uzunlukları da sırası ile $a,b,c$ olsun. Eğer $B$ açısının iç açı ortayı karşı kenarı $D$ noktasında kesiyorsa,
$CDB$ ile $CBA$ üçgenleri benzer olacak ve $\frac xa=\frac ab\Rightarrow a^2=xb......(1)$ eşitliği bulunacaktır. Öte yandan iç açı ortay teoreminden $\frac ac=\frac{x}{b-x}\Rightarrow x=\frac{ab}{a+c}...(2)$ elde edilecektir. $(2)$ eşitliği $(1)$ de kullanılırsa $a^2+ac=b^2$ eşitliği elde edilecektir.
$\alpha,3\alpha$ durumu için de benzer bir yaklaşım olabileceği gibi sinüs teoremi de olabilir.