$f(x) = ax^3 + bx^2 + cx +d = 0 $
3. dereceden bir fonksiyon olmak üzere
$f'' = 6ax + 2b = 0 => x = \frac{-b}{3a} $
Eşitliğini elde ederiz. Aynı zamanda bu denklemin kökler toplamıda $\frac{-b}{a}$ dır. Benim sormak istediğim herhangi bir 3. dereceden fonksiyon için eğer fonksiyonun 2. dereceden türevinin kökü varsa ( ya da dönüm noktası) onun bu denklemin kökleri toplamının $\frac{1}{3}$'ne her zaman için eşit olacağı çıkarılabilir mi ? Bu varsayım yanlışsa nedeni nedir ?