$ 1^3 + 2^3+ 3^3 + ... + n^3 = \left[ \dfrac {n\cdot \left( n+1\right) }{2}\right] ^{2}$
Önermesinin doğruluğunu tümevarım yöntemiyle ispatlayınız.
Benim denediğim yöntemler
n = 1 için P(1) : $ 1^3 = \left[ \dfrac {1\cdot \left( 1+1\right) }{2}\right] ^{2} $ $ => 1=1 $
n=k için P(k) : $ 1^3 + 2^3+ 3^3 + ... + k^3 = \left[ \dfrac {k\cdot \left( k+1\right) }{2}\right] ^{2}$
n=k+1 için P(k+1) : $ 1^3 + 2^3+ 3^3 + ... + (k+1)^3 = \left[ \dfrac {(k+1)\cdot \left( k+1+1\right) }{2}\right] ^{2}$
P(k)'da her iki tarafa da $ (k+1)^3$ ' ünü ekliyorum fakat sonuca ulaşamıyorum.