Ilgili soruda $a,b$ pozitif verilmisti. Bu soruda sadece $a,b\ne 0$ oldugunu kabul edelim. $a=0$ olmaz, $b=0$ ise de sabit fonksiyon olarak fonksiyon surekli olur.
$(u,v) \in \mathbb R^2$ olsun.
Verilen $\epsilon>0$ icin $\delta=\frac{|a|}{|b|}\epsilon>0$ secersek $$\sqrt{(x-u)^2+(y-v)^2}<\delta$$ saglandiginda $$|f(x,y)-f(u,v)|=\frac{|b|}{|a|}\sqrt{(x-u)^2+(y-v)^2}<\frac {|b|}{|a|}\delta=\epsilon$$ saglanir.
Dolayisiyla $f$ fonksiyonu ($\mathbb R^2$ icerisindeki herhangi bir!) $(u,v)$ noktasinda surekli olur. Dolayisiyla (ilgili soruda verilen) $X$'e kisitlanisi da surekli olur. Goruntuyu de $f(X)=Y$ olarak kisitlayabiliriz.