Koninin yan yüzünü, $AO$ doğrusu boyunca kesip açtığımızda, $ O $ merkezli, $\sqrt{r^2+h^2} $ yarıçaplı bir daire dilimi oluşur. $O$ daki açı (radyan cinsinden) $ \frac{2\pi r}{\sqrt{r^2+h^2}} $ dir. $A$ ile $B$ arasında istenen en kısa yol, şekilde (kırmızı) doğru parçası olacaktır. Bu yol üzerinde $B$ den daha yüksek bir noktanın var olması, $ O $ dan $ AB $ doğrusuna çizilen dikmenin ayağının $A$ ile $B$ arasında olmasın eşdeğerdir. Bu da ancak, $OAB$ üçgeninde, $A$ ve $B$ köşelerindeki açılarının dar açı olması ile mümkündür. Bu nedenle, $ \frac{2\pi r}{\sqrt{r^2+h^2}}\geq\frac{\pi}{2} $ olduğunda ($ O $ daki açı dik veya geniş olur), bu dikmenin ayağı $A$ ile $B$ arasındadır ve $A$ dan $B$ ye (istenen) en kısa yol, $B$ noktasından önce daha yükseğe çıkıp, daha sonra aşağı iner. $O$ köşesindeki açı dar olduğunda, yine aynı durum, $B$ deki açı dar olduğunda ($A$ daki açı daima dardır) ortaya çıkacaktır. $ A $ dan $OB$ ye inilen dikmenin ayağı $ C $ olsun. $B$ noktası, $ O $ ie $ C $ arasında ise ($ OAB $ üçgeninin ) $B$ deki (iç) açısı geniş, aksi halde dar olur. Öyleyse,($ O $ daki açı dar iken) $ |OC|=\sqrt{r^2+h^2}\cos\left(\frac{2\pi r}{\sqrt{r^2+h^2}}\right)$ olur. $$ \ell<\sqrt{r^2+h^2}-\sqrt{r^2+h^2}\cos\left(\frac{2\pi r}{\sqrt{r^2+h^2}}\right)=\sqrt{r^2+h^2}\left(1-\cos\left(\frac{2\pi r}{\sqrt{r^2+h^2}}\right)\right)$$ iken $B$ deki açı dar açı olup, yine $A$ dan $B$ ye (istenen) en kısa yol, $B$ noktasından önce daha yükseğe çıkıp, daha sonra aşağı iner (aksi halde de $B$ noktasından daha yükseğe çıkmaz).
(Not: $O$ daki açı dik veya geniş ise, $\cos\left(\frac{2\pi r}{\sqrt{r^2+h^2}}\right)\leq0$ olup, bu eşitsizlik yine sağlanır. Öyleyse, $A$ dan $B$ ye (istenen) en kısa yolun, $B$ noktasından önce daha yükseğe çıkıp, daha sonra aşağı inmesi için gerek ve yeter koşul
$$ \ell<\sqrt{r^2+h^2}\left(1-\cos\left(\frac{2\pi r}{\sqrt{r^2+h^2}}\right)\right)$$ olmasıdır.)