s(A$\cup$B$\cup$C) = s(A$\cup$(B$\cup$C)) = s(A) + s(B$\cup$C) - s(A$\cap$(B$\cup$C))
= s(A) + [s(B) + s(C) - s(B$\cap$C)] - s(A$\cap$(B$\cup$C))
= s(A) + s(B) + s(C) - s(B$\cap$C) - s((A$\cap$B)$\cup$(A$\cap$C))
= s(A) + s(B) + s(C) - s(B$\cap$C) - [s(A$\cap$B) + s(A$\cap$C) - s((A$\cap$B)$\cap$(A$\cap$C))]
(A$\cap$B)$\cap$(A$\cap$C) = A$\cap$B$\cap$C olduğundan,
= s(A) + s(B) + s(C) - s(B$\cap$C) - s(A$\cap$B) - s(A$\cap$C) + s(A$\cap$B$\cap$C) .
s(X$\cup$Y) = s(X$\cup$(Y/X)) = s(X) + s(Y/X) = s(X) + [s(Y) - s(X$\cap$Y)]