$|X|\geq \aleph_0$ ve $\tau=\left\{A\big{|}|\setminus A|< \aleph_0\right\}\cup \{\emptyset\}$ olsun ve $(X,\tau)$ topolojik uzayının regüler uzay olduğunu varsayalım.
$\left.\begin{array}{rr} x\notin F\in\mathcal{C}(X,\tau) \\ \\ (X,\tau), \text{ regüler}\end{array}\right\}\Rightarrow (\exists U\in\mathcal{U}(F))(\exists V\in\mathcal{U}(x))(U\cap V=\emptyset)$
$\Rightarrow (|X\setminus U|<\aleph_0)(|X\setminus V|<\aleph_0)(X\setminus (U\cap V)=X\setminus\emptyset)$
$\Rightarrow (|(X\setminus U)\cup (X\setminus V)|<\aleph_0)((X\setminus U)\cup (X\setminus V)=X)$
$\left.\begin{array}{rr} \Rightarrow |X|=|(X\setminus U)\cup (X\setminus V)|<\aleph_0 \\ \\ |X|\geq \aleph_0\end{array}\right\}\Rightarrow \text{Çelişki.}$