Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
436 kez görüntülendi
$(X,\tau)$ topolojik uzay olmak üzere $$((X,\tau), \text{ regüler})((X,\tau), \ T_0\text{ uzayı})\Rightarrow (X,\tau), \ T_2\text{ uzayı}$$ olduğunu gösteriniz.
Lisans Matematik kategorisinde (11.5k puan) tarafından  | 436 kez görüntülendi

1 cevap

0 beğenilme 0 beğenilmeme

$(X,\tau),$ regüler; $(X,\tau), \ T_0$ uzayı; $x,y\in X$ ve $x\neq y$ olsun.

 

$\left.\begin{array}{rr} (x,y\in X)(x\neq y) \\ \\ (X,\tau), \ T_0\text{ uzayı}\end{array}\right\} \overset{?}{\Rightarrow} \left(y\notin \overline{\{x\}} \vee x\notin \overline{\{y\}}\right)$

I. Durum: $y\notin \overline{\{x\}}$ olsun.

$\left.\begin{array}{rr} y\notin \overline{\{x\}} \\ \\ (X,\tau), \text{ regüler}\end{array}\right\}\Rightarrow \left(\exists U\in\mathcal{U}\left(\overline{\{x\}}\right)\right)(\exists V\in\mathcal{U}(y))(U\cap V=\emptyset)$

$\Rightarrow \left(x\in \overline{\{x\}}\subseteq U\in\tau\right)(V\in\mathcal{U}(y))(U\cap V=\emptyset)$

$\Rightarrow \left(U\in\mathcal{U}(x)\right)(V\in\mathcal{U}(y))(U\cap V=\emptyset).$

 

II. Durum: $x\notin \overline{\{y\}}$ olsun.

$\left.\begin{array}{rr} x\notin \overline{\{y\}} \\ \\ (X,\tau), \text{ regüler}\end{array}\right\}\Rightarrow (\exists U\in\mathcal{U}\left(\overline{\{y\}}\right)(\exists V\in\mathcal{U}(x))(U\cap V=\emptyset)$

$\Rightarrow \left(y\in \overline{\{y\}}\subseteq U\in\tau\right)(V\in\mathcal{U}(x))(U\cap V=\emptyset)$

$\Rightarrow \left(U\in\mathcal{U}(y)\right)(V\in\mathcal{U}(x))(U\cap V=\emptyset).$

 

NOT : "?" işaretinin bulunduğu yerdeki geçişin gerekçesine aşağıdaki linkten ulaşabilirsiniz.

https://matkafasi.com/117067/t0-uzaylarinin-karakterizasyonlarina-dair-ii?show=117067#q117067

(11.5k puan) tarafından 
20,274 soru
21,803 cevap
73,475 yorum
2,427,871 kullanıcı