Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
1.3k kez görüntülendi

2 ve 9 ile bölünebilen pozitif Bir tam sayının tam olarak 15 tane pozitif böleni varsa bu sayının 5 ile bölümünden kaç olur ?

A.1      B.2.       C.3.      D.4

Orta Öğretim Matematik kategorisinde (11 puan) tarafından  | 1.3k kez görüntülendi

Sen bu soruda ne düşündün/denedi Yarennnn0?

2 ve 3 bölünen sayıları yazdım ve 15 böleni olan sayıyı bulmaya çalıştım çok uzun oldu böyle ve bulamadım  kısa bi yolu varsa bu yüzden sordum

Çözümünü yazabilir misin? Belki kısalmalar vardır.

1 cevap

0 beğenilme 0 beğenilmeme
Aradığımız pozitif tamsayı $n$ olsun. $n$ sayısının içinde yalnız bir tane $2$ çarpanı olamaz, bunu gösterelim.

Eğer $n$ sayısının içinde yalnız bir tane $2$ çarpanı olsaydı bir $m$ tek tamsayısı için $n=2^1\cdot 3^2 \cdot m $ biçiminde olurdu. Bundan dolayı $n$ nin pozitif bölen sayısı çift sayı olur ve $15$ verisi ile çelişir. ($m$ nin $3$ ile bölünüp bölünememesi de bu çelişkiyi ortadan kaldırmaz).

Dahası $15=3\cdot 5$ iki farklı asal sayının çarpımından oluştuğundan $n$ sayısı $2$ ve $3$ dışında başka bir asal çarpan daha içeremez. Eğer bir $p>3$ asalı için $n=2^a\cdot3^b\cdot p^c$ biçiminde asal çarpanlara ayrılmış olsa pozitif bölen sayısı $(a+1)(b+1)(c+1)=15$ olurdu ve $a \geq 2$, $b\geq 2$ olduğundan $c+1 =1 \implies c=0$ olmak zorundadır. Dolayısıyla $n$ sayısı üçüncü bir $p$ asal çarpanına sahip değildir.

Şimdi $(a+1)(b+1)=15$ denklemi çözülürse $(a,b)=(2,4)$ veya $(a,b)=(4,2)$ sıralı ikilileri elde edilir. Bu değerler için sırasıyla $n=2^2\cdot 3^4$ veya $n=2^4\cdot 3^2$ olur. Her iki $n$ değeri de modülo $5$ içinde incelenirse $1$ kalanı verdiği görülür.


(2.6k puan) tarafından 
20,274 soru
21,803 cevap
73,476 yorum
2,428,171 kullanıcı