$$\lim\limits_{x\to 1}(\frac{1}{x-1}-\frac{3}{1-x^3})=\lim\limits_{x\to 1}(\frac{1}{x-1}+\frac{3}{x^3-1})$$
$$\lim\limits_{x\to 1}\frac{x^2+x+4}{x^3-1}=yok$$ dir. Ancak soruda verilen aşagıdaki gibi ise;
$$\lim\limits_{x\to 1}(\frac{1}{x-1}+\frac{3}{1-x^3})=\lim\limits_{x\to 1}(\frac{1}{x-1}-\frac{3}{x^3-1})$$
$$\lim\limits_{x\to 1}\frac{x^2+x-2}{x^3-1}=\lim\limits_{x\to 1}\frac{(x+2)(x-1)}{(x-1)(x^2+x+1)}=\lim\limits_{x\to 1}\frac {x+2}{x^2+x+1}=1$$ dir.