Lineer dönüşüm dediğimiz şey de nihayetinde bir tür fonksiyondur.
Teorem: Bir $f$ fonksiyonunun $f^{-1}$ ters fonksiyonuna sahip olması için gerek ve yeter şart $f$ nin bire bir ve örten olmasıdır.
Buna göre, $T:V \to W$ bir lineer dönüşüm ve $T^{-1}: W \to V $ ters dönüşüm olsun. Yukarıdaki teorem gereğince $T$ bire bir ve örtendir.
Şimdi de $T:V \to W$ bir lineer dönüşüm ve $T$ bire bir örten olsun. $T^{-1}: W \to V $ ters fonksiyonu vardır. Gösterilmesi gereken, bu ters fonksiyonun da lineer dönüşüm olduğunu ispatlamaktır. Yani $T^{-1}(c_1\vec{a} + c_2\vec{b})=c_1T^{-1}(\vec{a})+c_2T^{-1}(\vec{b})$ gibi bir eşitlik var mıdır? Bunu ispatlayabilirseniz probleminiz tamamlanıyor. Son vuruşu size bırakalım.