Soyut cebir dalı içinde, genel olarak polinom ile polinom fonksiyonu farklı kavramlar olarak değerlendiriliyor. Sebep olarak bir kitapta şu örnek sunulmaktadır: $p(x)=x$ ve $q(x)=x^2$ polinomları $\mathbb Z_2[x]$ polinom halkasına ait olsun. (Burada $Z_2[x]$; katsayılarını $\mod 2$'deki kalan sınıfları olan $\{ 0, 1\}$ den alan polinom halkasını ifade etmektedir). Buna göre, dereceleri farklı olan $p$ ve $q$ polinomları farklıdır. Fakat $p(1)=1=q(1)$ ve $p(0)=0=q(0)$ olduğundan her $x\in \mathbb Z_2 = \{ 0, 1\} $ için $p(x)=q(x)$ olup eşit fonksiyonlar olmaktadır.
Evet, bu açıklama genel anlamda polinom ile polinom fonksiyonu kavramlarının farklı olduğunu kesin biçimde gösteriyor.
Bununla beraber, bazı halkalarda polinom ile polinom fonksiyonu tamamen aynı kavramlardır diye düşünüyorum. Soru başlığında belirttiğim gibi $\mathbb R [x]$ halkasına ait iki $p(x),q(x)$ polinomu aldığımızda her $x \in \mathbb R $ için $p(x)=q(x) $ oluyorsa, bu durumda $p,q$ polinomlarının eşit dereceli terimlerinin katsayıları da eşit olur. Bunu ispatlamak kolaydır, Çünkü $h(x)=p(x) - q(x)$ olarak tanımlanan $h$ polinomunun sonsuz çoklukta kökü olur. Bu da $h$'nın sıfır polinomu olmasını gerektirir. Aksi halde, $\deg(h) =n$ ($n\geq 1$) olsa, $h$ polinomu derecesinden fazla köke sahip olurdu. Bu da cebirin temel teoremi ile çelişir. Demek ki $h(x)=0$ olup $p,q$ polinomlarında eşit dereceli terimlerin katsayıları eşittir. Yani bu iki polinom eşittir. $\mathbb Z_2 [x]$ de sorun olan husus, burada oluşmuyor. İddiamı desteklemek için kullandığım argümanım budur.
Şimdi, $\mathbb R [x]$ deki $p$ polinomu ile katsayılarını $\mathbb R$'den alan $p: \mathbb R \to \mathbb R$ polinom fonksiyonunun aynı kavram olarak düşünülmesinde öğretim yöntem tekniği bakımından, anlaşılırlık bakımından fayda sağladığına inandığım bazı örnekleri sunacağım.
Problemler:
1.a $\mathbb R [x]$ halkasında $p(x)= \dfrac{3x-6}{x-2}$ polinom mudur?
1.b $\mathbb R $ üzerinde tanımlı $p(x)= \dfrac{3x-6}{x-2}$ bağıntısı polinom fonksiyonu mudur?
2.a $\mathbb R [x]$ halkasında $p(x)= \dfrac{x^4-1}{x^2+1}$ polinom mudur?
2.b $\mathbb R $ üzerinde tanımlı $p(x)= \dfrac{x^4-1}{x^2+1}$ bağıntısı polinom fonksiyonu mudur?
3.a $\mathbb R [x]$ halkasında $p(x)= \sqrt{x^2}$ polinom mudur?
3.b $\mathbb R $ üzerinde tanımlı $p(x)= \sqrt{x^2}$ bağıntısı polinom fonksiyonu mudur?
4.a $\mathbb R [x]$ halkasında $p(x)= x^{100}-2x^{99} + x +1$ polinomunun $x-2$ ile bölümünden kalan kaçtır?
4.b $\mathbb R $ üzerinde tanımlı $p(x)= x^{100}-2x^{99} + x +1$ polinom fonksiyonunun $x-2$ ile bölümünden kalan kaçtır?
Çözümler:
Ben, iddiam doğrultusunda a-b maddeleri arasında ayrım gözetmediğim için bunları fonksiyona ait kavramları kullanarak çözerim. Bunları vereceğim:
1.b $\mathbb R$'de tanımlı bir polinom her $x$ gerçel sayısı için bir gerçel görüntüye sahip olmalıdır. Fakat $p(2)$ tanımlı olmadığından $p$ polinom değildir.
2.b Her $x$ gerçel sayısı için özdeş olarak $p(x)= \dfrac{x^4-1}{x^2+1}=x^2-1$ olduğundan $p$ bir polinomdur.
3.b Her $x$ gerçel sayısı için özdeş olarak $p(x)=\sqrt{x^2}=|x|$ olur. Ayrıca bir polinom fonksiyonu her noktada türevlenebilirdir. Mutlak değer fonksiyonunun grafiğinde $x=0$ noktasında kırılma yaptığını bildiğimiz için (diğer bir deyişle sol türev ve sağ türev farklıdır) $p'(0)$ yoktur. $p$ polinom değildir.
4.b $p(x)= x^{100}-2x^{99} + x +1$ polinomunun $x-2$ polinomu ile bölümünden kalanı bulmak için basitçe $p(2)$ değerini hesaplarız. Yani $p$ fonksiyonu altında $2$'nin görüntüsünü buluruz. $p(2)=2^{100}-2\cdot 2^{99}+2+1=3$ olup kalan $3$ tür.
Gördüğünüz gibi, bu tür sorulara cevap verirken tanım kümesi, özdeş olarak eşit olma, türevlenebilme, görüntü hesaplama gibi kavramları kullanarak cevap verdim. $\mathbb R[x]$'in polinomu, $\mathbb R$ de tanımlı polinom fonksiyon değil ise, problemlerin a şıklarına ''tanım kümesi, özdeş olarak eşit olma, türevlenebilme, görüntü hesaplama'' gibi fonksiyonlara ait kavramları kullanmadan cevap vermek gerekir.
Değerlendirmeleriniz ve uzman görüşleriniz benim için çok değerlidir. Polinomun ne olduğunu yanlış anlıyor da olabilirim. İlk kez polinomu öğrenecek birine bu kavram nasıl sunulur? Ben bir fonksiyon olarak sunuyorum. Farklı/aynı yönlü cevaplarınızı, yorumlarınızı paylaşırsanız memnun olurum. Çünkü bu sayfanın bağlantısını çeşitli matematik öğretmen gruplarında da paylaşacağım ve tahtaya doğru bilgiler yazmak, bunları doğru öğretmek isteyen birçok öğretmen var. Teşekkürler!