$a_1,a_2,\cdots ,a_n$ hepsi birden 0 olmayan tamsayılar olmak üzere şu kümeyi tanımlayalım.
$A=\{a_1b_1+a_2b_2+\cdots +a_nb_n:b_1,b_2,\cdots b_n\in \mathbb{Z}\}\cap \mathbb{N^+}$
Eğer ki her $i$ için $a_i=b_i$ alırsak A kümesinin bir elemanı bulunmuş olur yani $A$ kümesi boş değil. Boş olmayan her doğal sayıların alt kümesi olan bir kümenin bir en küçük elemanı vardır. $A$ kümesinin en küçük elemanına $d$ diyelim o zaman $d=a_1b_1+ \cdots +a_nb_n$ olur. $a_i$ sayılarını $d$'ye bölelim.
$$a_1=dq_1+r_1 , d>r_1\geq0$$
$$a_2=dq_2+r_2 , d>r_2\geq0$$
$$\vdots$$
$$a_n=dq_n+r_n , d>r_n\geq0$$
Şimdi $r_i$ sayılarını yalnız bırakalım. Herhangi bir $r_m$ sayısı için
$r_m=a_m-dq_m=a_m-(a_1b_1+ \cdots +a_nb_n)q_m=a_1(-b_1q_m)+\cdots +a_m(1-b_mq_m)+\cdots +a_n(-b_nq_n)$ olur. Bu $r_m$ sayısı $0$'dan büyük olursa $\in A$ olacağından çelişki çıkar. Çünkü biz $d$'yi $A$'nın en küçük elemanı seçmiştik ve $r_m<d$ olduğundan en küçük elemandan daha küçük eleman bulmuş oluruz. Yani $r_m=0$ olmalıdır.
Böylece $m=\{1,2,\cdots ,n\}$ için $a_m=dq_m$ yazabiliriz.
Herhangi bir $c\in \mathbb{N}$ ve $c/a_1,a_2, \cdots ,a_n$ sayısı alalım. Bu $c$ sayısı $a_1b_1+a_2b_2+\cdots +a_nb_n$ sayısınıda böler. Dolayısıyla $d$'yide böler. $a_1,a_2, \cdots ,a_n$ sayılarının her ortak böleni $d$'yide böldüğünden $d=(a_1,a_2,\cdots ,a_n)$ olur.