$$g(x):=f(x)$$ kuralı ile verilen $$g:X\setminus A\to Y\setminus f[A]$$ fonksiyonunun $(\tau_{X\setminus A}\text{-}\tau'_{Y\setminus f[A]})$ homeomorfizma olduğunu göstermek için $g$ fonksiyonunun
1. bijektif,
2. $(\tau_{X\setminus A}\text{-}\tau'_{Y\setminus f[A]})$ sürekli,
3. $(\tau_{X\setminus A}\text{-}\tau'_{Y\setminus f[A]})$ açık
olduğunu göstermeliyiz.
1. $f$ fonksiyonu $(\tau\text{-}\tau')$ homeomorfizma olduğundan $f$ fonksiyonu bijektiftir. Dolayısıyla $g(x):=f(x)$ kuralı ile verilen $g:X\setminus A\to Y\setminus f[A]$ fonksiyonunun bijektif olduğunu görmek zor olmasa gerek.
2. $g$ fonksiyonunun $(\tau_{X\setminus A}\text{-}\tau'_{Y\setminus f[A]})$ sürekli olduğunu gösterelim.
$V\in\tau'_{Y\setminus f[A]}$ olsun. $(g^{-1}[V]\in\tau_{X\setminus A}$ olduğunu göstermeliyiz$)$
$\left.\begin{array}{rrr} V\in\tau'_{Y\setminus f[A]}\Rightarrow (\exists T\in\tau')(V=T\cap (Y\setminus f[A])) \\ \\ f, \ (\tau\text{-}\tau') \text{ homeomorfizma} \\ \\ g:X\setminus A\to Y\setminus f[A], \ g(x):=f(x) \end{array}\right\}\Rightarrow $
$\Rightarrow (f^{-1}[T]\in\tau)(g^{-1}[V]=f^{-1}[V]=f^{-1}[T\cap (Y\setminus f[A])]=f^{-1}[T]\cap f^{-1}[(Y\setminus f[A])])=f^{-1}[T]\cap (X\setminus f^{-1}[f[A]])=f^{-1}[T]\cap (X\setminus A))$
$\Rightarrow g^{-1}[V]\in\tau_{X\setminus A}.$
3. $g$ fonksiyonunun $(\tau_{X\setminus A}\text{-}\tau'_{Y\setminus f[A]})$ açık olduğunu gösterelim.
$U\in\tau_{X\setminus A}$ olsun. $(g[U]\in\tau_{Y\setminus f[A]}$ olduğunu göstermeliyiz$)$
$\left.\begin{array}{rrr} U\in\tau_{X\setminus A} \Rightarrow (\exists T\in\tau)(U=T\cap (X\setminus A)) \\ \\ f, \ (\tau\text{-}\tau') \text{ homeomorfizma} \\ \\ g:X\setminus A\to Y\setminus f[A], \ g(x):=f(x) \end{array}\right\}\Rightarrow $
$\Rightarrow (f[T]\in\tau')(g[U]=f[U]=f[T\cap (X\setminus A)]=f[T]\cap f[X\setminus A]=f[T]\cap (f[X]\setminus f[A])=f[T]\cap (Y\setminus f[A]))$
$\Rightarrow g[U]\in\tau'_{Y\setminus f[A]}.$