Şöyle oldu...
$=\dfrac{1}{(2k+1)!}\displaystyle\sum_{i=0}^k \frac{(2k+1)!}{(2i+1)!(2k-2i)!}$
$=\dfrac{1}{(2k+1)!} \displaystyle\sum_{i=0}^k \begin{pmatrix} 2k+1 \\ 2i+1 \end{pmatrix}$
$=\dfrac{1}{(2k+1)!}\displaystyle\left( \begin{pmatrix} 2k+1 \\ 1 \end{pmatrix} + \begin{pmatrix} 2k+1 \\ 3 \end{pmatrix} +\cdots+ \binom{2k+1} {2k+1} \right)$
$=\dfrac{1}{(2k+1)!}(2^{2k+1-1})$
$=\dfrac{1}{(2k+1)!}2^{2k}$
O halde ifademiz
$=2\displaystyle\sum_{k=0}^\infty (-1)^k x^{2k+1}\dfrac{1}{(2k+1)!}2^{2k}$
$=\displaystyle\sum_{k=0}^\infty (-1)^k\dfrac{(2x)^{2k+1}}{(2k+1)!}$
$=\sin2x$ olur