$R$ değişmeli bir halka olsun ve bir $r \in R$ alalım. Bu eleman ile çarpma işlemi, $R$ üzerinde $R$-lineer bir fonksiyon tanımlar: $$ç_r: R \to R \\ ç_r(x) = rx$$
Alıştırma 1: Her $r,s \in R$ için, $$ç_{rs}=ç_r \circ ç_s$$ olur.
Alıştırma 2: $r$'nin tersinir olması için gerek ve yeter koşul $ç_r$'nin tersinir (modül izomorfizmi) olmasıdır.
Dolayısıyla senin sorduğun soruyu soruyu şöyle genelleyebiliriz.
Ilk genelleştirme: $f, g: R \to R$ birer $R$-lineer fonksiyonlar olsun. $f$ tersinir değil ise ya da $g$ tersinir değil ise $fg$ tersinir olabilir mi?
Buna benzer bir soru lineer cebirden aşina olduğumuz bir soru. Eğer $A$ ve $B$ birer $n \times n$ matris iseler ve $AB$ tersinir ise $A$ ve $B$ de tersinir olmak zorundadır.
Vektör uzayı dilinden konuşacak olursak, $V$ sonlu boyutlu bir vektör uzayı ve $f,g:V\to V$ lineer operatörler ise ve $fg$ tersinir ise $f$ ve $g$ de tersinir olmalıdır.
Ikinci genelleştirme: $M$ sonlu eleman tarafından üretilmiş bir $R$-modül olsun ve $f,g: M \to M$ birer $R$-lineer fonksiyon olsun. Eğer $f$ tersinir değil ise ya da $g$ tersinir değil ise $fg$ tersinir olabilir mi?
***
Buraya tekrar dönüp cevabı tamamlayacağım.