$$A:=[a,b]\setminus \left\{a,b,a+\frac{b-a}{2}, a+\frac{b-a}{3}, a+\frac{b-a}{4}, \ldots \right\}$$$$=$$$$(a,b)\setminus \left\{a,b,a+\frac{b-a}{2}, a+\frac{b-a}{3}, a+\frac{b-a}{4}, \ldots \right\}$$ olmak üzere $$f(x):=\left\{\begin{array}{ccc} a+\frac{b-a}{2} & , & x=a \\ a+\frac{(b-a)(x-a)}{2(x-a)+b-a} & , & x\in\left\{a+\frac{b-a}{n}\Big{|}n\in\mathbb{N}\right\}\\ x & , & x\in A\\ \end{array}\right.$$ kuralı ile verilen $$f:[a,b]\to (a,b)$$ fonksiyonu bijektiftir (Neden?).