$$\mathcal{A}:=\left\{\left(1+ \frac{1}{n}, 3\right) \big{|} n\in\mathbb{N} \right\}\subseteq\mathcal{U} \ $$ ve $$\ (1,2]\subseteq (1,3)=\cup \mathcal{A} \ $$ olduğundan $\mathcal{A}$ ailesi, $(1,2]$ kümesinin bir $\ \mathcal{U}$-açık örtüsüdür. Şimdi bu açık örtünün sonlu bir altörtüsünün olduğunu yani $\mathcal{A}^* \subseteq\mathcal{A} $ , $|\mathcal{A}^*|<\aleph_0$ ve $(1,2]\subseteq\cup\mathcal{A}^*$ olduğunu varsayalım. $\mathcal{A}$ açık örtüsünün sonlu bir altörtüsünün olduğunu varsaydığımızda
$\left.\begin{array}{rr}(\mathcal{A}^* \subseteq\mathcal{A})(|\mathcal{A}^*|<\aleph_0) ((1,2]\subseteq\cup\mathcal{A}^*)\Rightarrow (\exists \{n_1,n_2,n_3,...,n_k \}\subseteq\mathbb{N})\left(\mathcal{A}^*=\{(1+ \frac{1}{n_i},3) \big{|} i\in\{1,2,3,...,k \}\}\right)\left((1,2]\subseteq\cup\mathcal{A}^*\right)\\ \\ n_0:=\max\{n_1,n_2,...,n_k \} +1 \in\mathbb{N} \end{array}\right\}\Rightarrow $
$\Rightarrow (1+ \frac{1}{n_0}\notin\cup\mathcal{A}^*)(1+ \frac{1}{n_0}\in (1,2]\subseteq\cup\mathcal{A}^*)$
$\Rightarrow (1+ \frac{1}{n_0}\notin\cup\mathcal{A}^*)(1+ \frac{1}{n_0}\in \cup\mathcal{A}^*)$
çelişkisini elde ederiz.