$\lim_{x\to2}\dfrac{x-3}{x-2}=\text{tanımsız}$ (tanımsız terine "Yok" demek bence daha iyi olur)
$\lim_{x\to2}\dfrac1{\frac{x-3}{x-2}}=\lim_{x\to2}\dfrac{x-2}{x-3}=0$ diyorsun sanırım.
(Eğer soru bu ise) Onlar, iki farklı fonksiyonun limiti.
$\frac1{\text{yok}}=0$ nasıl oluyor diyorsan,
Limit Teoremleri (hemen hemen hepsi) var olan limitlerden başka limitleri bulmamızı sağlar.
Limitin olmadığı (en üstteki durum gibi) durumlar için bir şey söyleyen limit teoremi bilmiyorum ben.
(öyle şeyler var ama genellikle, fazla işe yaramadıkları için, teorem olarak adlandırılmazlar. Örneğin:
$\lim_{x\to a}f(x)=\text{yok}$ ve $\lim_{x\to a}g(x)=1$ ise $\lim_{x\to a}f(x)\cdot g(x)=\text{yoktur}$ Doğru önermesi limit ile ilgili teoremlerden elde edilir.)
Bu nedenle, bu durumda bir çelişki görünmüyor.