Sorulan toplamın değeri X olsun.
$X.(a+b+c)=(\frac a{b+c}+\frac b{a+c}+\frac c{a+b})(a+b+c)$
$X.(a+b+c)=\frac{a^2}{b+c}+\frac{ab}{a+c}+\frac{ac}{a+b}+ \frac{a}{b+c}+\frac{b^2}{a+c}+\frac{bc}{a+b}+\frac{ac}{b+c}+\frac{bc}{a+c}+\frac{c^2}{a+b}$
$X.(a+b+c)=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}+\frac{ac+ab}{b+c}+\frac{ab+bc}{a+c}+\frac{ac+bc}{a+b}$
$\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0$ olduğundan
$X.(a+b+c)=\frac{a.(b+c)}{b+c}+\frac{b.(a+c)}{a+c}+\frac{c.(a+b)}{a+b}$
$X.(a+b+c)=a+b+c$ ve
$X=1$ olur.