Kesik koniyi uzatarak tepe noktasına $O$ diyelim. $O$ noktasının $r_0$ yarıçaplı çemberin merkezine olan uzaklığı $l_0$ olsun. Benzer üçgenlerden $$\dfrac{l_0}{r_0}=\dfrac{l_0+h_0}{R_0} \tag{1}$$ eşitliği vardır. $R_0,r_0,h_0$ birer sabit olduğundan $l_0$ da bir sabittir. Bir $t$ anında deney tüpündeki suyun hacmi $V$, üst yarıçap $r$, suyun yüksekliği $h$, $O$ noktasının $r$ yarıçaplı çemberin merkezine olan uzaklığı $l$ olsun. $$h+l = h_0 + l_0 \tag{2}$$ dır. Yine benzerlikten $$\dfrac{l}{r}=\dfrac{l+h}{R_0} \tag{3}$$ olup $ l = \dfrac{(l_0+h_0)r}{R_0} \tag{4}$ elde edilir. Su sabit hızla aktığı için suyun hacmindeki anlık değişim $$\dfrac{dV}{dt}=C_1 \tag{5}$$ biçiminde bir sabittir.
Ayrıca $t=t_0$ anında üst yarıçap $r_0$ ve suyun hacmi $V_0$ ise $V_0$ bir sabittir. Yine yüksekliği $h_0+l_0$ ve taban yarıçapı $R_0$ olan tüm koninin hacmi olan $V_1$ de bu değerler türünden bir sabittir.
Şimdi $h\leq h_0$ iken suyun hacmine bakalım: $V=V_1 - \dfrac{\pi}{3}r^2 l $ dir. $(4)$ ten dolayı $$V=V_1 - \dfrac{\pi}{3}r^3\dfrac{(h_0+l_0)}{R_0} \tag{6} $$ elde edilir.
Böylece $ \dfrac{dV}{dr}= -\dfrac{\pi r^2(h_0+l_0)}{R_0}$ olup $$ \dfrac{dr}{dV}= -\dfrac{R_0}{\pi r^2 (h_0+l_0)} \tag{7}$$ elde edilir. $,l,r,h$ arasındaki bağıntılardan $h=\dfrac{(h_0+l_0)}{R_0}(R_0-r)$ olup $$ \dfrac{dh}{dr}=-\dfrac{(h_0+l_0)}{R_0}\tag{8}$$ bulunur. Şimdi zincir kuralından $\dfrac{dh}{dt}=\dfrac{dh}{dr}\dfrac{dr}{dV}\dfrac{dV}{dt} = \dfrac{(h_0+l_0)}{R_0}\cdot \dfrac{R_0}{\pi r^2 (h_0+l_0)}\cdot C_1$ olup $$\dfrac{dh}{dt} =\dfrac{C_1}{\pi r^2} $$ elde edilir. $t\to t_{0}^{-}$ için $r\to r_{0}^{+}$ olup bu noktada soldan türev $$ \dfrac{dh}{dt} =\dfrac{C_1}{\pi r_{0}^{2}} \tag{9}$$ bulunur.
Şimdi de $ h\geq h_0$ iken suyun hacmine bakalım. $V = V_0 + \pi r_{0}^2(h-h_0) \tag{10}$ olur. $\dfrac{dV}{dh} = \pi r_0^2$ olduğundan $$ \dfrac{dh}{dV} = \dfrac{1}{\pi r_0^2} \tag{11}$$ dir. Yine zincir kuralından $ \dfrac{dh}{dt} = \dfrac{dh}{dV} \dfrac{dV}{dt}$ olup $ \dfrac{dh}{dt} =\dfrac{C_1}{\pi r_0^2} $ elde edilir. Bu değer bir sabit olduğundan $t\to t_0^{+}$ için de sağdan türev $\dfrac{dh}{dt} =\dfrac{C_1}{\pi r_0^2} \tag{12}$ aynıdır.
$t=t_0$ noktasında sürekli olan $h=h(t)$ fonksiyonunun sol ve sağ türevleri eşit olduğundan $h'(t_0)$ daima vardır ve $$h'(t_0)=\dfrac{C_1}{\pi r_0^2} $$ değerine sahiptir.