$\sup A=x\Rightarrow (\forall\epsilon>0)(\exists a_{\epsilon}\in A)(x-\epsilon<a_{\epsilon}\leq x)$
$\left.\begin{array}{rr}\Rightarrow (\forall\epsilon>0)(a_{\epsilon}\in (x-\epsilon, x+\epsilon)\cap A) \\ \\ x\notin A\end{array}\right\}\Rightarrow$
$\Rightarrow(\forall\epsilon>0)(a_{\epsilon}\in [(x-\epsilon,x)\cup (x, x+\epsilon)]\cap A)$
$\Rightarrow(\forall\epsilon>0)([(x-\epsilon,x)\cup (x,x+\epsilon)]\cap A\neq \emptyset)$
$\Rightarrow x\in D(A).$