$\cos^2x=1-\sin^2x$ ($\cos^2x+\sin^2x=1$)
$\cos^2x=1-\frac{1-\cos2x}{2}$ ($\sin^2x=\frac{1-\cos(2x)}{2}$)
$\cos^2x=\frac{1+\cos(2x)}{2}=\frac{1}{2}+\frac{1}{2}\cos(2x)$
($\cos x=\sum_{n=0}^\infty\frac{(-1)^nx^{2n}}{(2n)!}$)
($\cos x$ fonsiyonunda $x$ gördüğümüz yerlere $2x$ yazalım.)
($\cos(2x)=\sum_{n=0}^\infty\frac{(-1)^n(2x)^{2n}}{(2n)!}$)
$\cos^2x=\frac{1}{2}+\frac{1}{2}\sum_{n=0}^\infty\frac{(-1)^n(2x)^{2n}}{(2n)!}$ ($\frac{1}{2}$ yi içeri alalım.)
\[\cos^2x=\frac{1}{2}+\sum_{n=0}^\infty\frac{(-1)^n(2x)^{2n}}{2(2n)!}=\frac{1}{2}+\sum_{n=0}^\infty\frac{(-1)^n2^{2n-1}x^{2n}}{(2n)!}\]