$X=\mathbb{R}, \ \tau_1:=\tau_{alt}$ (alt limit topolojisi) $\tau_2:=\tau_{üst}$ (üst limit topolojisi) ve $\tau_3:=\mathcal{U}$ (alışılmış (standart) topoloji) olmak üzere $$\mathcal{B}_1:=\left\{[a,b)\Big{|}(a,b\in\mathbb{R})(a<b)\right\}$$ ve $$\mathcal{B}_2:=\left\{(a,b]\Big{|}(a,b\in\mathbb{R})(a<b)\right\}$$ aileleri sırasıyla $\tau_1$ ve $\tau_2$ topolojilerinin birer bazıdır. Ancak $$\mathcal{B}_1\cap\mathcal{B}_2=\emptyset$$ ailesi, $$\tau_1\cap \tau_2=\tau_3$$ topolojisi için bir baz değildir (Neden?). Dolayısıyla söz konusu önerme her zaman doğru değildir.