$(\Rightarrow):$ $\mathcal{B},$ $\tau$ için baz ve $x\in X$ olsun. Amacımız lokal baz tanımı gereği $$\mathcal{B}_x\subseteq \mathcal{N}(x)\ldots (1)$$ ve $$(\forall N\in\mathcal{N}(x))(\exists B\in\mathcal{B}_x)(B\subseteq N)\ldots (2)$$ önermelerinin doğru olduğunu göstermek.
$\mathcal{B},$ $\tau$ için baz ve $x\in X$ olsun.
$\left.\begin{array}{rr} \mathcal{B}, \ \tau \text{ için baz} \Rightarrow \mathcal{B}\subseteq\tau\\ \\ \mathcal{B}_x:=\{B|x\in B\in\mathcal{B}\}\end{array}\right\}\Rightarrow \mathcal{B}_x\subseteq \mathcal{U}(x)\subseteq\mathcal{N}(x).$
Dolayısıyla $(1)$ nolu önerme doğru. Şimdi $(2)$ nolu önermenin doğru olduğunu gösterelim.
$N\in\mathcal{N}(x)$ olsun.
$\left.\begin{array}{rr} N\in\mathcal{N}(x) \Rightarrow (\exists T\in\tau)(x\in T\subseteq N) \\ \\ \mathcal{B}, \ \tau \text{ için baz}\end{array}\right\}\Rightarrow $
$\left.\begin{array}{rr} \Rightarrow (\exists \mathcal{A}\subseteq \mathcal{B})(x\in T=\cup \mathcal{A}\subseteq N) \\ \\ \mathcal{A}_x:=\{B|x\in B\in\mathcal{A}\}\end{array}\right\}\Rightarrow (\exists B\in \mathcal{A}_x\subseteq\mathcal{B}_x)(B\subseteq N).$
$\Rightarrow (B\in \mathcal{B}_x)(B\subseteq N).$
$(\Leftarrow):$ $x\in X$ ve $\mathcal{B}_x,$ $x$'de yerel baz olsun. Amacımız $\mathcal{B}$ ailesinin $\tau$ topolojisi için baz olduğunu göstermek. Bunun için de $$\mathcal{B}\subseteq\tau\ldots (1)$$ ve $$(\forall A\in \tau)(\exists\mathcal{A}\subseteq\mathcal{B})(A=\cup \mathcal{A})\ldots (2)$$ önermelerinin doğru olduğunu göstermeliyiz. $\mathcal{B}\subseteq\tau$ olduğu açık. $(2)$ nolu önermenin doğru olduğunu gösterelim.
$A\in\tau$ olsun.
$\left.\begin{array}{rr} A\in\tau\Rightarrow (\forall x\in A)(A\in\mathcal{N}(x)) \\ \\ \mathcal{B}_x, \ x\text{'de yerel baz}\end{array}\right\}\Rightarrow $
$\left.\begin{array}{rr} \Rightarrow (\exists B_x\in\mathcal{B}_x)(x\in B_x\subseteq A) \\ \\ \mathcal{A}:=\{B_x|(\forall x\in A)(\exists B_x\in\mathcal{B}_x)(x\in B_x\subseteq A)\}\end{array}\right\}\Rightarrow $
$\Rightarrow (\mathcal{A}\subseteq\mathcal{B})(A=\cup\mathcal{A}).$
NOT: $\mathcal{U}(x):=\{U|x\in U\in\tau\}$ ve $\mathcal{N}(x):=\{N|(\exists T\in \tau)(x\in T\subseteq N)\}$