$\displaystyle\lim_{x\to\infty} \dfrac{\sqrt{x}}{\sqrt{x+\sqrt{x+\sqrt{x}}}}$=
$y=\sqrt {x}$olsun, $x\rightarrow \infty \Rightarrow y\rightarrow \infty $
$\lim _{y\rightarrow \infty }\dfrac {y}{\sqrt {y^{2}+\sqrt {y^{2}+y}}}=\lim _{y\rightarrow \infty }\dfrac {y}{\sqrt {y^{2}+y\sqrt {1+\dfrac {1}{y}}}} =$
$\lim _{y\rightarrow \infty }\dfrac {y}{y\sqrt {1+\dfrac {\sqrt {1+\dfrac {1}{y}}}{y}}}$
$= 1$