$x=(x_1,x_2,x_3),\;\; y=(y_1,y_2,y_3)\in\mathbb{R^3}$ olmak uzere Lie parantezini soyle tanimlayalim
$\begin{align}[x,y]=x\times y&=\left|
\begin{array}{ccc}
i & j & k \\
x_1 & x_2 & x_3 \\
y_1 & y_2& y_3 \\
\end{array}
\right|\\&=(x_2y_3-x_3y_2)i-(x_1y_3-x_3y_1)j+(x_1y_2-x_2y_1)k\end{align}$
$\begin{align}1)\quad[x,y]=x\times y&=\left|
\begin{array}{ccc}
i & j & k \\
x_1 & x_2 & x_3 \\
y_1 & y_2& y_3 \\
\end{array}
\right|\\&=(x_2y_3-x_3y_2)i-(x_1y_3-x_3y_1)j+(x_1y_2-x_2y_1)k\\&=-(y_2x_3-y_3x_2)i+(y_1x_3-y_3x_1)j-(y_1x_2-y_2x_1)k\\&=-[(y_2x_3-y_3x_2)i-(y_1x_3-y_3x_1)j+(y_1x_2-y_2x_1)k]\\=&-[y,x]\end{align}$
$\implies [x,y]$ antisimetriktir
$2) \begin{align}\quad&[\lambda x,y]=(\lambda x)\times y=\lambda(x\times y)=\lambda[x,y]\\& [x+y,z]=(x+y)\times z=x\times z+y\times z=[x,z]+[y,z]\\& [z,x+y]=z\times (x+y)=z\times x+z\times y=[z,x+[z,y]\end{align}$
$\implies [x,y]$ iki lineerdir.
$3) \begin{align}\quad&[x,[y,z]]+[y,[z,x]]+[z,[x,y]]\\&=x\times(y \times z)+y\times(z \times x)+z\times(x \times y)\overset{?}=0\end{align}$
Oncelikle $x\times (y\times z)=(x\cdot z)y-(x\cdot y)z$ ve $a\cdot b=b\cdot a$ dir.
$ \begin{align}\quad&[x,[y,z]]+[y,[z,x]]+[z,[x,y]]\\&=x\times(y \times z)+y\times(z \times x)+z\times(x \times y)\\&= (x\cdot z)y-(x\cdot y)z+(y\cdot x)z-(y\cdot z)x+(z\cdot y)x-(z\cdot x)y=0\end{align}$
$\implies [x,y]$ Jacobi özdeşliği saglanir.