Sonlu cisimler uzerine kurulan vektor uzaylarinda norm tanimi var mi? Varsa bir ornek verebilir misiniz?
$\mathbb{Z}/2\mathbb{Z}$ icin oklid uzayinda verilen normu kullaninca vektor uzayinin boyutu cift ise $1$ lerden olusan vektorun normu $0$ geliyor. Yani norm degil.
Normu tanimlamak icin vektor toplamasi ve skalar ile carpimin surekli oldugu topolojilerden metrik uzay tarafindan uretilen bir topolojiye denk olanini secebilir miyiz?