$F$, carpimsal grubu sonlu uretecli olacan bir cisim olsun. Her abelyen grup bir $\mathbb{Z}$ moduludur. Bu nedenle her cismin carpimsal grubu bir $\mathbb{Z}$ moduludur: $$\mathbb{Z}\times F^{\times}\longrightarrow F^{\times}$$ $$(n,x)\longmapsto x^n$$
Yardimci teorem: Tek carpanlama bolgesi uzerine sonlu uretecli bir modulun altmodulleri de sonludur.
Ispat: Bkz. Lang'in Algebra kitabi.
Iddia: $F$ cisminin karakteri sifir olamaz.
Kanit: Eger sifir olsaydi $\mathbb{Q}$ cismi $F$ cisminin altcismi olurdu. Yardimci teorem geregi $\mathbb{Q}-\{0\}$ sonlu uretecli bir $\mathbb{Z}$ modul olmalidir. Ama bu $\mathbb{Q}-\{0\}$ carpimsal grubunun sonlu uretecli olmasi demektir ki, bunun dogru olmadigini biliyoruz. O halde $F$ cisminin karakteri sifir olamaz.
Yardimci teorem: Sonlu uretecli degismeli bir grup $$\mathbb{Z}^n\oplus \Big(\bigoplus_{i=1}^k \mathbb{Z}/q_i\mathbb{Z}\Big)$$ bicimindedir.
Ispat: Ayni kaynak.
$F^{\times}$ ile $\mathbb{Z}^n\oplus \Big(\bigoplus_{i=1}^k \mathbb{Z}/q_i\mathbb{Z}\Big)$ arasinda kurulan izomorfizmada $\Big(\bigoplus_{i=1}^k \mathbb{Z}/q_i\mathbb{Z}\Big)$ grubunun ongoruntusu sonlu oldugu icin dongusel olmak zorundadir. O halde $F^{\times}$ carpimsal grubunun $$\mathbb{Z}^n\oplus \mathbb{Z}/m\mathbb{Z}$$ formatinda oldugunu bulduk. $F^{\times}$ icinde $\mathbb{Z}/m\mathbb{Z}$ kismina denk gelen elemanlar, mertebesi sonlu olan elemanlar. Bu elemanlarin olusuturdugu kumeye $0$ elemanini eklersek sonlu bir cisim elde ederiz. (not: iki elemanin toplaminin da burada oldugunu gostermek icin karakteristigin $p$ oldugunu kullanmak gerekir). Simdi elimizde $F$ cisminin icince kalan ve carpimsal grubu $\mathbb{Z}/m\mathbb{Z}$ olan bir $K$ sonlu cismi var. Demek ki $F$ cismimiz $K$ cismimizin genislemesi. Simdi $a\in F^{\times}$ mertebesi sonlu olmayan bir eleman olsun. Bu durumda bu $a$ elemani $K$ uzerine cebirsel olamaz. Cunku cebirsel olsaydi, $K(a)$ sonlu bir cisim olurdu ve $a$ elemaninin derecesi sonlu olurdu. O halde $a$ elemani $K$ uzerine askin. Yani $K(a)$ cismi $K(X)$ fonksiyon cismine izomorf olmak zorunda.
Iddia: $K(X)^{\times}$ sonlu uretecli degildir. Diyelim ki $$\frac{f_1(X)}{g_1(X)},\cdots,\frac{f_r(X)}{g_r(X)}\subseteq K(X)^{\times}$$ uretec bir kume olsun. $K$ uzerine sonsuz coklukta indirgenemez polinom oldugu icin, hicbir $f_i$ ya da $g_i$nin boleni olmayan indirgenemez bir $h(X)$ polinomu vardir. Acik ki boyle bir eleman $\frac{f_i}{g_i}$lerin carpimi olamaz. O halde $n=0$ olmak zorundadir.
Sonuc: $F$ sonlu bir cisimdir.