Doğan hocam haklı, bilindiği gibi yakınsaklığı göstermek bir hayli zorken, dizinin limitini bulabilmek daha da zor. Çözümüm şu şekilde:
Burada şunu gözlemlemeliyiz: $a_{1}=1$ ve $a_{2}=\sqrt{3}$ Yani birinci terim ikinci terimden küçük. Monoton bir dizi olsun diyelim. Ya artacak ya da azalacak. O halde kanıta başlayabilir.
$a_{n}$ monoton bir dizi olsun o halde $a_{n+1}-a_{n}$'in değerine göre yakınsaklık ya da{ıraksaklıklığı belirleyebiliriz. Bunun en bariz yolu matematiksel indüksiyondur(tümevarımla kanıt ya da Peano Belitlerinden 5.si). Başta gösterildiği gibi $a_{2}>a_{1}$ idi. Şimdi, $a_{k+1}>a_{k}$ olduğunu kabul edelim ve daha sonra, $a_{k+2}>a_{k+1}$ için kanıtlayalım. Buradan sonra da eğer varsa limitini bulmak gerekir. Limit, 3 çıkar bunu daha sonra göstereceğim.
$a_{k+2}>a_{k+1}$ ise $\sqrt{3a_{k+1}}>\sqrt{3a_{k}}$ olduğu açıktır. Biraz cebirden sonra, $a_{k+1}>a_{k}$ ifadesine tekrar ulaşılır ve artan bir dizi olduğu anlaşılır. Bu halde varsayalım ki, $a_{n}\leq{M}$ ve $\lim _{n\rightarrow \infty }a_{n}=l=M$. Eğer $\lim _{n\rightarrow \infty }a_{n}=l=M$ ise $\lim _{n\rightarrow \infty }a_{n+1}=l$'dir.(Neden?). Aynı halini yazalım, o halde $\sqrt{\lim _{n\rightarrow \infty }a_{n+1}}=l=M$ olacaktır ve dizinin tanımından $\sqrt{\lim _{n\rightarrow \infty }3a_{n}}=l$ olur içerisini de yukarıda gösterdiğmiz şekilde yazarsak. $\sqrt{3l}=l$ buradan görülür ki $3l=l^2$ ve karşımıza iki kök çıkar, bunlar $l=0$ ve $l=3$dür. Limitimiz 3'tür(Neden?).
Şimdi bu limitin 3 olduğunu tümevarım ile kanıtlayalım. $a_{1}<3$ olduğu açıktır. Varsayalım ki $a_{n}<3$ olsun o halde $a_{n+1}<3$ olduğunu kanıtlamalıyız. Bunu da şöyle yapalım:
Elimizdeki $a_{n}<3$ ifadesini $3$ ile çarpıp kökünü alalım. $\sqrt{3a_{n}}<3$ ifadesini elde ederiz. Bu da zaten $a_{n+1}<3$'dür. Dizinin üç ile sınırlı olduğunu gösterdik ve bu sınırın 3 oldğunu da gösterdik. Kanıtımız bitmiştir.