Regüler uzay demek her kapalı küme ve bu kapalı kümeye ait olmayan her nokta açık kümelerle ayrılabilir demek. Biçimsel olarak şöyle yazabiliriz:
$(X,\tau), \text{ regüler}:\Leftrightarrow (\forall F\in \mathcal{C}(X,\tau))[x\notin F\Rightarrow (\exists U\in\mathcal{U}(F))(\exists V\in\mathcal{U}(x))(U\cap V=\emptyset)]$
$\mathcal{C}(X,\tau):=\{A\subseteq X|\setminus A\in\tau\}$
$\mathcal{U}(F):=\{U|(F\subseteq U)(U\in \tau)\}$
$\mathcal{U}(x):=\{U|(x\in U)(U\in \tau\}$
Uzayın regüler olmadığı durumlarda $$\theta O(X)=CO(X)$$ olduğunu göstermek istiyoruz. Bunun için de $$CO(X)\subseteq\theta O(X)$$ ve $$\theta O(X)\subseteq CO(X)$$ olduğunu göstermemiz gerekiyor. $CO(X)\subseteq\theta O(X)$ olduğunu göstermek kolay. Şöyle ki:
$A\in CO(X)$ olsun. Amacımız $$A\in\theta O(X)$$ olduğunu yani $$A=\theta\text{-}int(A)$$ olduğunu yani $$(\forall x\in A)(\exists U\in\mathcal{U}(x))(cl(U)\subseteq A)$$ önermesinin doğru olduğunu göstermek.
$x\in A\in CO(X)$ olsun.
$\left.\begin{array}{rr} x\in A\in CO(X)\Rightarrow (A\in\mathcal{U}(x))(cl(A)=A\subseteq A) \\ \\U:=A\end{array}\right\}\Rightarrow (U\in \mathcal{U}(x))(cl(U)\subseteq A)\Rightarrow x\in\theta\text{-}int(A)$
O halde $$A\subseteq \theta\text{-}int(A)\ldots (1)$$
Öte yandan $\theta$-iç tanımından da hemen görüleceği üzere $$\theta\text{-}int(A)\subseteq A\ldots (2)$$ kapsaması her zaman geçerlidir.
$(1),(2)\Rightarrow A=\theta\text{-}int(A)\Rightarrow A\in\theta O(X).$