$b_1)$ $\mathbb R = \bigcup \mathcal B$ olduğunu göstermek için $\mathbb{R}\subseteq\cup\mathcal{B}$ ve $\cup\mathcal{B}\subseteq\mathbb{R}$ olduğunu göstermeliyiz.
$ x \in \mathbb R $ olsun.
$\left.\begin{array}{rr} x \in \mathbb R \Rightarrow x \in [ x, x+1 ) \Rightarrow x \in \bigcup_{(a,b\in\mathbb{R} )(a<b)}{[a,b)}\\ \\ \mathcal B:=\{[ a,b) | (a , b \in \mathbb R) (a<b)\} \end{array}\right\}\Rightarrow $ $ x \in \bigcup \mathcal B$
elde edilir. O halde $$ \mathbb R \subseteq \bigcup \mathcal B \ldots (1)$$ olur.
$ x \in \bigcup \mathcal B$ olsun.
$\left.\begin{array}{rr} x \in \bigcup \mathcal B \Rightarrow( \exists B \in \mathcal B)(x \in B)\\ \\ \mathcal B:=\{[ a,b) | (a , b \in \mathbb R)(a<b)\} \end{array}\right\}\Rightarrow ( \exists a,b \in \mathbb R) (x \in [a,b) \subseteq \mathbb R) \Rightarrow x \in \mathbb R$
elde edilir. O halde $$ \bigcup \mathcal B \subseteq \mathbb R \ldots (2) $$ olur. Dolayısıyla
$$(1),(2)\Rightarrow \bigcup \mathcal B = \mathbb R .$$
$b_2)$ $ A,B \in \mathcal B$ olsun. (Amacımız $A\cap B = \bigcup \mathcal A$ olacak şekilde en az bir $\mathcal{A}\subseteq \mathcal{B}$ ailesinin var olduğunu göstermek.)
$A,B \in \mathcal B\Rightarrow (\exists a,b,c,d\in \mathbb R)(A=[a,b))(B=[c,d))$
$\Rightarrow A\cap B=[a,b)\cap [c,d)=\left\{\begin{array}{ccccc} \emptyset & , & a<b\leq c<d \\ [c,b) & , & a\leq c<b\leq d \\ [c,d) & , & a\leq c<d\leq b \\ [a,d) & , & c\leq a<d\leq b \\ [a,b) & , & c\leq a<b\leq d \end{array}\right.$
I. Durum:
$\left.\begin{array}{rr} A\cap B=\emptyset \\ \\ \mathcal{A}:=\emptyset\end{array}\right\}\Rightarrow (\mathcal{A}\subseteq \mathcal{B})(A\cap B=\cup \mathcal{A}).$
II. Durum:
$\left.\begin{array}{rr} A\cap B=[c,b) \\ \\ \mathcal{A}:=\{[c,b)\}\end{array}\right\}\Rightarrow (\mathcal{A}\subseteq \mathcal{B})(A\cap B=\cup \mathcal{A}).$
III. Durum:
$\left.\begin{array}{rr} A\cap B=[c,d) \\ \\ \mathcal{A}:=\{[c,d)\}\end{array}\right\}\Rightarrow (\mathcal{A}\subseteq \mathcal{B})(A\cap B=\cup \mathcal{A}).$
IV. Durum:
$\left.\begin{array}{rr} A\cap B=[a,d) \\ \\ \mathcal{A}:=\{[a,d)\}\end{array}\right\}\Rightarrow (\mathcal{A}\subseteq \mathcal{B})(A\cap B=\cup \mathcal{A}).$
V.Durum:
$\left.\begin{array}{rr} A\cap B=[a,b) \\ \\ \mathcal{A}:=\{[a,b)\}\end{array}\right\}\Rightarrow (\mathcal{A}\subseteq \mathcal{B})(A\cap B=\cup \mathcal{A}).$