$(d(x,A)=0\Rightarrow x\in \overline{A})\equiv (x\notin\overline{A}\Rightarrow d(x,A)\neq 0)$ olduğundan $x\notin\overline{A}$ olsun.Bu takdirde ;
$\begin{array}{rcl} x\notin\overline A & \Rightarrow &(\exists\epsilon>0)(\forall a\in A)(d(x,a)\geq\epsilon) \\ & \Rightarrow & (\exists\epsilon>0)( \forall b\in\{d(x,a)|a\in A\})(b\geq\epsilon) \\ & \Rightarrow &\text{inf}\{d(x,a)|a\in A\}\neq 0 \\ & \Rightarrow & d(x,A)\neq 0 \end{array}$
o halde $(d(x,A)=0\Rightarrow x\in \overline{A})\equiv 1$
şimdi; $(x\in\overline{A}\Rightarrow d(x,A)=0)\equiv 1$ olduğunu gösterelim
$ x\in\overline{A}\Rightarrow (\ \forall\epsilon>0)(\exists y_\epsilon\in A)(A\cap B(x,\epsilon)\neq\emptyset)\Rightarrow \begin{array}{c} \\ \\ \left. \begin{array}{cc} (\ \forall\epsilon>0)( y_\epsilon\in A\cap B(x,\epsilon)) \\ \\ d(x,A)=\text{inf}\{d(x,z)|z\in A\}\end{array} \right\} \Rightarrow (\forall\epsilon >0)(d(x,A)\leq d(x,y_\epsilon)<\epsilon)\Rightarrow\end{array}$
$\left.\begin{array}{rr} \Rightarrow d(x,A)\leq 0 \\ \\ d(x,A)\geq 0 \end{array}\right\}\Rightarrow d(x,A)=0$