Eğer $f(x)$ fonksiyonu $A$ kümesinde türevlenebilir ise $f^{-1}$ fonksiyonu da $f(A)$ kümesinde türevlenebilirdir. Çünkü $f^{-1}$ fonksiyonu grafiği $f(x)$ fonksiyonunun grafiğinin $y=x$ eksenine göre simetriğidir dolayısıyla $f(x)$ fonksiyonunda eğimi hesaplanabilen bölgeler, fonksiyonun $y=x$ eksenine göre simetriği alındığında da da eğimi hesaplanabilir (türevli) olacaktır. ($f'(x)\neq0$ kabul ettik)
$f(a)=x$ ve $f(a+\Delta a)=x+\Delta x$ kabul edelim. Öyleyse
$f^{-1}(x)=a$ ve $f^{-1}(x+\Delta x)=a+\Delta a$'dır. $f$'nin $a$'da türevlenebilir olduğunu kabul ettiğimizden $f$, $a$'da süreklidir ve bu da cevabın en başında bahsettiğim durumdan ötürü $f^{-1}$ fonksiyonunun $f(a)$'da ($x$'te) sürekli olmasını gerektirir. O zaman
$\lim\limits_{\Delta x\to 0}\Delta a=0$ olur.
Bulmak istediğimiz $(f^{-1})'(x)$'in $f$ ve $f^{-1}$ cinsinden değeri. Türevin limit tanımını kullanarak
$(f^{-1})'(x)=\lim\limits_{\Delta x\to 0}\dfrac{(f^{-1})(x+\Delta x)-(f^{-1})(x)}{\Delta x}=\lim\limits_{\Delta x\to 0}\dfrac{a+\Delta a-a}{\Delta x}=\dfrac{da}{dx}$
$f'(a)=\dfrac{dx}{da}$ olduğundan
$(f^{-1})'(x)=\dfrac{1}{f'(a)}=\dfrac{1}{f'((f^{-1})(x))}$ bulunur.