$X:=\{a,b\}$ kümesi üzerinde $\tau_1:=2^{X}$ ve $\mathbb{R}$ kümesi üzerinde de $\tau_2:=2^{\mathbb{R}}$ topolojisini ele alalım.
$(X,\tau)$ topolojik uzayı ayrılabilir uzay ve $$f(x):=\left\{
\begin{array}{ccc}
\mathbb{I} & , & x=a \\
\mathbb{Q} & , & x=b\\
\end{array}
\right. $$ kuralı ile verilen $$f:(X, \tau) \rightarrow (\mathbb{R}, 2^{\mathbb{R}})$$ fonksiyonu sürekli olmasına karşın $$(\mathbb{R}, 2^{\mathbb{R}})$$ topolojik uzayı ayrılabilir uzay değildir. Yani ayrılabilir uzay olma özelliği süreklilik altında korunan bir özellik değildir.