Cauchy - Schwarz integral eşitsizliğine çeşitli ispatlar bulunabilir. Aklımıza geldikçe bu başlığa ekleyebiliriz.
1. İspat:
$f$ ve $g$ fonksiyonlarının $[a,b]$ aralığında integrallenebilir olduğunu düşünerek ispatı yapalım. Her $x$ gerçel sayısı için
$$ 0 \leq \left(xf(t)+g(t) \right)^2 $$
dir. Her iki tarafın $[a,b]$ aralığı üzerinden integrali alınırsa
$$0 \leq \int\limits_{a}^{b}(xf(t)+g(t))^2 dt = x^2\int\limits_{a}^{b}f^2(t)dt + 2x\int\limits_{a}^{b}f(t)g(t)dt + \int\limits_{a}^{b}g^2(t)dt =Ax^2+Bx+C $$
diyelim. Burada $A=\int\limits_{a}^{b}f^2(t)dt$, $B=2\int\limits_{a}^{b}f(t)g(t)dt$, $C=\int\limits_{a}^{b}g^2(t)dt $ dir.
Her $x$ gerçel sayısı için $0 \leq Ax^2+Bx+C \Longleftrightarrow \Delta = B^2 - 4AC \leq 0$ dır. Bu eşitsizlikte $A,B,C$ yerine tekrar integral eşitliklerini yazarsak
$$ \left(\int\limits_{a}^{b}f(t)g(t)dt \right)^2 \leq \int\limits_{a}^{b}f^2(t)dt \int\limits_{a}^{b}g^2(t)dt $$
sonucuna ulaşılır.
Not: Ayrıca C-S İntegral eşitsizliği $\mathbb R^n$ nin bir alt bölgesinde tanımlı, reel değerli ve sürekli fonksiyonlar için yazılırsa, çok katlı integrallerde de geçerli olduğu görülebilir. Bunun ispatı da açıkça, yukarıda verdiğimiz gibi yapılır.