$K=\left\{(x,y):x^2+y^2\leq 16, x,y \in \mathbb{R}^+\right\}$ olsun $f_x(x_0,y_0)=0$ ve $f_y(x_0,y_0)=0$ koşullarını sağlayan $(x_0,y_0)$ ikilileri yoktur. Bu yüzden $x^2+y^2=16$ olduğu çok değişkenli fonksiyonu almalıyız.
$g(x,y,k)=3x+4y+k(x^2+y^2-16)$
$g_x'=3+2kx$
$g_y'=4+2ky$
$g_k'=0$
Buradan $3+2kx=0$ ve $4+2ky=0$ o zaman $\dfrac3x=\dfrac4y$
$x=3k$ ve $y=4k$ bulunur.
$9k^2+16k^2=16$ buradan $k=\pm \dfrac45$
$(x,y) \in \mathbb{R}^+$ olduğu için $k=+\dfrac{4}{5}$ olur.
Buradan $3 \times \dfrac{12}5+4\times \dfrac{16}5=20$ bulunur.